Model 2: The Abakus Clock¶
Date: | 2017-08-19 |
---|
Design Decisions¶
- 32 ticks/sec, generated from main crystal (11.0592 MHz)
- timeup clock with simple counters, no structures, no timezone
- optional: uptime counter
- optional: led.1 blinking 1/sec
- multitasker
- new: a battery backed real time clock is connected via i2c
- new: start time is read from RTC
- new: shift register drives LEDs as display
Description¶
The code included below is a complete, working example, tested on an
atmega644p controller. The syntax for the includes is such that
amforth-shell.py
will upload the programm and resolve all
#include file
directives.
This clock is derived from the Minimal Clock by adding a geek display (Abakus Display) and a battery backed RTC.
I2C RTC (PCF8583)¶
#include i2c_rtc_pcf8583.fs
Abakus Display¶
Obviously, we need to define the pin connected to the shift register, and load the words to transfer data to the shift register(s)
\ abakus display
PORTD 2 portpin: sr_latch
PORTD 3 portpin: sr_clock
PORTD 4 portpin: sr_data
#include shiftregister.fs
The Code¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | \ 2017-08-16 main-02-abakus.fs
\ Author: Erich Wälde
\ License: this code is explizitly placed in the public domain
\
\ include syntax for upload with amforth-shell.py
\
\ 11.059200 MHz main crystal
\ timer/counter1
\ 32 ticks/second
\
\ minimal clock
\ plus i2c, i2c RTC (pcf8583)
\ display: shift registers (74x595) and LEDs
\
#include builds.frt
#include erase.frt
#include dot-base.frt
#include imove.frt
#include bitnames.frt
#include marker.frt
#include environment-q.frt
#include dot-res.frt
#include avr-values.frt
#include is.frt
#include dumper.frt
#include interrupts.frt
\ these definitions are resolved by amforth-shell.py as needed
\ include atmega644p.fs
#include flags.frt
#include 2variable.frt
#include 2constant.frt
#include 2-fetch.frt
#include 2-store.frt
#include m-star-slash.frt
#include quotations.frt
#include avr-defers.frt
#include defers.frt
marker --start--
\ --- ports, pins, masks
PORTB 2 portpin: led.0
PORTB 3 portpin: led.1
PORTB 4 portpin: led.2
PORTB 5 portpin: led.3
PORTC 0 portpin: i2c_scl
PORTC 1 portpin: i2c_sda
\ abakus display
PORTD 2 portpin: sr_latch
PORTD 3 portpin: sr_clock
PORTD 4 portpin: sr_data
\ --- famous includes and other words
: ms ( n -- ) 0 ?do pause 1ms loop ;
: u0.r ( u n -- ) >r 0 <# r> 0 ?do # loop #> type ;
: odd? ( x -- t/f ) $0001 and 0= 0= ;
: even? ( x -- t/f ) $0001 and 0= ;
\ --- driver: status leds
#include leds.fs
\ --- driver: i2c rtc clock
: bcd>dec ( n.bcd -- n.dec )
$10 /mod #10 * + ;
: dec>bcd ( n.dec -- n.bcd )
#100 mod #10 /mod $10 * + ;
#include i2c-twi-master.frt
#include i2c.frt
#include i2c-detect.frt
: +i2c ( -- )
i2c_scl pin_pullup_on
i2c_sda pin_pullup_on
0 \ prescaler
#6 \ bit rate --- 400kHz @ 11.0592 MHz
i2c.init
;
: i2c.scan
base @ hex
$79 $7 do
i i2c.ping? if i 3 .r then
loop
base !
cr
;
$50 constant i2c_addr_rtc
#include i2c_rtc_pcf8583.fs
\ --- master clock
\ --- timeup
#include timeup_v0.0.fs
\ tu.counts -- fields available as:
\ tick sec min hour day month year
\ last_day_of_month ( year month -- last_day )
\ timeup.init
\ timeup
\ tu.upd.limits ( Y m -- )
\ --- uptime
2variable uptime
: .uptime ( -- ) uptime 2@ decimal ud. [char] s emit ;
: ++uptime ( -- ) 1. uptime 2@ d+ uptime 2! ;
\ --- timer1 clock tick
\ 32 ticks/sec
\ timer_1_ overflow
\ clock source main crystal/256
#include clock_tick1_main.fs
\ +ticks
\ tick.over? ( -- t/f )
\ tick.over!
\ half.second.over? ( -- 0|1|2 )
: clock.set ( Y m d H M S -- )
sec ! min ! hour !
1- day !
over over
1- month ! year !
( Y m ) tu.upd.limits
;
: clock.get ( -- S M H d m Y )
sec @ min @ hour @
day @ 1+ month @ 1+ year @
;
: clock.dot ( S M H d m Y -- )
#4 u0.r [char] - emit #2 u0.r [char] - emit #2 u0.r [char] _ emit
#2 u0.r [char] : emit #2 u0.r [char] : emit #2 u0.r
;
: clock.show ( -- )
clock.get
clock.dot
;
: .date
year @ 4 u0.r
month @ 1+ 2 u0.r
day @ 1+ 2 u0.r
;
: .time
hour @ 2 u0.r [char] : emit
min @ 2 u0.r [char] : emit
sec @ 2 u0.r
;
: hwclock>clock ( -- )
rtc.get \ --
year !
1- month !
1- day !
hour !
min !
sec !
drop \ 1/100 secs
year @ month @ 1+ tu.upd.limits
;
: clock>hwclock ( -- )
year @ month @ 1+ day @ 1+
hour @ min @ sec @
tick @ #100 ticks/sec m*/
( Y m d H M S S/100 ) rtc.set
;
#include shiftregister.fs
#include abakus.fs
: clock.display.abakus.time ( -- )
hour @ #10 /mod swap
min @ #10 /mod swap
sec @ #10 /mod swap
6 type.abakus
;
\ --- multitasker
#include multitask.frt
: +tasks multi ;
: -tasks single ;
\ --- timeup jobs ---------------------------
: job.tick
;
: job.sec
++uptime
clock.display.abakus.time
;
: job.min
;
: job.hour ;
: job.day ;
: job.month
\ update length of month in tu.limits
year @ month @ 1+ tu.upd.limits
;
: job.year
\ update YYYY in eeprom of rtc
\ year @ rtc.set.year
;
create Jobs
' job.tick ,
' job.sec , ' job.min , ' job.hour ,
' job.day , ' job.month , ' job.year ,
variable jobCount
: jobCount++
jobCount @
6 < if
1 jobCount +!
then
;
\ --- task 2 --------------------------------
: run-masterclock
['] tx-poll to emit \ add emit to run-masterclock
begin
tick.over? if
tick.over!
1 tick +!
job.tick
then
half.second.over?
dup 0<> if
dup odd? if \ half second
led.1 off
else \ second
led.1 on
timeup
0 tick !
1 jobCount !
then
then
drop
\ run one job per loop, not all at once
jobCount @
bv tu.flags fset?
if
jobCount @ dup
Jobs + @i execute
bv tu.flags fclr
then
jobCount++
pause
again
;
$40 $40 0 task: task-masterclock \ create task space
: start-masterclock
task-masterclock tib>tcb
activate
\ words after this line are run in new task
run-masterclock
;
: starttasker
task-masterclock task-init \ create TCB in RAM
start-masterclock \ activate tasks job
onlytask \ make cmd loop task-1
task-masterclock tib>tcb alsotask \ start task-2
multi \ activate multitasking
;
\ --- main ----------------------------------
: init
+leds leds-intro
#2017 1 1 0 0 0 clock.set
0. uptime 2!
+ticks
timeup.init
+i2c
i2c_addr_rtc i2c.ping? if
hwclock>clock
else
#2017 1 1 0 0 0 clock.set
then
+sr
;
: run
init
starttasker
;
: run-turnkey
applturnkey
init
starttasker
;
\ ' run-turnkey to turnkey
: .d ( -- )
decimal
.uptime space space
clock.show space
tick @ . space
ct.ticks.follow @ .
cr
;
|