Model 3: The UTC Wall Clock

Date:2017-09-18

Design Decisions

  • 128 ticks/sec, generated from external RTC clock (32768 Hz)
  • uptime counter
  • multitasker
  • a battery backed real time clock is connected via i2c
  • start time is read from RTC
  • new: RTC generates 32768 Hz signal to drive clock ticks
  • new: run epoch seconds as additional software clock
  • new: use epoch seconds to derive times in 3 different time zones, read desired zone from 2 input pins
  • new: conversion to and from epoch seconds: additional .short versions use cached values for some epoch, e.g. 2017
  • new: shift register drives 7-segment digits as display

Description

The code included below is a complete, working example, tested on an atmega644p controller. The syntax for the includes is such that amforth-shell.py will upload the programm and resolve all #include file directives.

This clock is a more traditional design with 4 large 7-Segment digits and a good RTC (battery backed). Placed in a nice housing it can be used standalone.

../../_images/i_model3_2.jpg

Model 3: Four 7-segment LED digits to indicate local time.

The Pinout section should be familiar by now. Using quotations ([: ... ;]) the LED definitions can have alias names, which might be more useful in the given context.

The Display is driven by shift registers as before. These are connected to 7-segment digits, not individual LEDs.

Time zones are selected by reading 2 pins.

The Real Time Clock is a different chip (DS3231). It needs somewhat adapted functions to read and set the time counters. The chip is much more accurate than the clock sources I have used before.

The counters of the master clock are unchanged, uptime is counted as before. The source of the clock tick has changed. The 32768 Hz square wave signal is driving timer/counter0 which overflows 128 times per second. The corresponding interrupt service routine increments a counter, the main loop checks whether a half second has passed.

Functions to set/read/display the counters of the master clock are available. Functions to copy time counter values from between the master clock and the RTC follow.

Handling of time zones, epoch seconds, and the display of a local time are handled as described in section Time Zones.

Multitasking, periodic jobs, a background task to run the main loop of the master clock — everything is as described before (Model 2).

../../_images/p_display_wallclock2.png

Schematic for one 7-segment digit

../../_images/i_model3_1.jpg

Prototype Board manually worked

../../_images/i_model3_3.jpg

Controller Board and display

The Code

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
\ 2017-08-30  main-20-utc-wallclock.fs
\
\ Written in 2017 by Erich Wälde <erich.waelde@forth-ev.de>
\
\ To the extent possible under law, the author(s) have dedicated
\ all copyright and related and neighboring rights to this software
\ to the public domain worldwide. This software is distributed
\ without any warranty.
\
\ You should have received a copy of the CC0 Public Domain
\ Dedication along with this software. If not, see
\ <http://creativecommons.org/publicdomain/zero/1.0/>.
\
\ include syntax for upload with amforth-shell.py
\
\     11.059200 MHz main crystal
\     32768 Hz square signal on pin T0
\     timer/counter0
\     128 ticks/second
\
\ minimal clock
\ plus i2c, i2c RTC (ds3231)
\      display: shift registers (TPIC 6B595) and 4 7-segment digits
\      MasterClock in UTC, display in 2 other timezones
\      2 pins for selection of timezone

#include erase.frt
#include bitnames.frt
#include marker.frt
\ these definitions are resolved by amforth-shell.py as needed
\ include atmega644p.fs

#include flags.frt
#include 2variable.frt
#include 2constant.frt
#include 2-fetch.frt
#include 2-store.frt
#include m-star-slash.frt
#include quotations.frt
#include avr-defers.frt
#include defers.frt
#include eallot.frt
#include 2evalue.frt

marker --start--

PORTA $03 bitmask: _tz

\ PORTB 0 portpin: T0
\ PORTB 1 portpin: T1
PORTB 2 portpin: led.0
PORTB 3 portpin: led.1
PORTB 4 portpin: led.2
PORTB 5 portpin: led.3
: led_dcf  [: led.0 ;] execute ;
: led_utc  [: led.1 ;] execute ;
: led_mez  [: led.2 ;] execute ;
: led_mesz [: led.3 ;] execute ;

PORTC 0 portpin: i2c_scl
PORTC 1 portpin: i2c_sda

\ abakus/4x7seg display
PORTD 4 portpin: sr_data
PORTD 5 portpin: sr_clock
PORTD 6 portpin: sr_latch
\ --- famous includes and other words
: ms   ( n -- )       0 ?do pause 1ms loop ;
: u0.r ( u n -- )     >r 0 <# r> 0 ?do # loop #> type ;
: odd?  ( x -- t/f )  $0001 and 0= 0= ;
: even? ( x -- t/f )  $0001 and 0= ;

\ --- driver: status leds
#include leds.fs

\ --- driver: time zone switch
: +sw ( -- )          _tz pin_input ;

\ --- driver: i2c rtc clock
: bcd>dec  ( n.bcd -- n.dec )
  $10 /mod  #10 * + ;
: dec>bcd  ( n.dec -- n.bcd )
  #100 mod  #10 /mod  $10 * + ;

#include i2c-twi-master.frt
#include i2c.frt
#include i2c-detect.frt
: +i2c  ( -- )
  i2c_scl pin_pullup_on
  i2c_sda pin_pullup_on
  i2c.prescaler/1
  #6 \ bit rate --- 400kHz @ 11.0592 MHz
  i2c.init
;

: i2c.scan
  base @ hex
  $79 $7 do
    i i2c.ping? if i 3 .r then
  loop
  base !
  cr
;
$68 constant i2c_addr_rtc
#2000 constant Century
#include i2c_rtc_ds3231.fs

\ --- master clock
\ --- timeup
#include timeup_v0.0.fs
                                        \ tu.counts -- fields available as:
                                        \   tick sec min hour day month year
                                        \ last_day_of_month ( year month -- last_day )
                                        \ timeup.init
                                        \ timeup
                                        \ tu.upd.limits ( Y m -- )

\ --- uptime
2variable uptime
: .uptime  ( -- )  uptime 2@  decimal ud. [char] s emit ;
: ++uptime ( -- )  1.  uptime 2@  d+  uptime 2! ;

\ --- timer0 clock tick
\ 128 ticks/sec
\ timer_0_ overflow
\ clock source pin T0 @ 32768 Hz (from ds3231)
#include clock_tick0_external.fs

                                        \ +ticks
                                        \ tick.over?  ( -- t/f )
                                        \ tick.over!
                                        \ half.second.over?  ( -- 0|1|2 )
: clock.set ( Y m d H M S -- )
  sec ! min ! hour !
  1- day !
  over over
  1- month ! year !
  ( Y m ) tu.upd.limits
;
: clock.get ( -- S M H d m Y )
  sec @ min @ hour @
  day @ 1+ month @ 1+ year @
;
: clock.dot ( S M H d m Y -- )
  #4 u0.r [char] - emit #2 u0.r [char] - emit #2 u0.r  [char] _  emit
  #2 u0.r [char] : emit #2 u0.r [char] : emit #2 u0.r
;
: clock.show ( -- )
  clock.get
  clock.dot
;

: .date
  year  @    4 u0.r
  month @ 1+ 2 u0.r
  day   @ 1+ 2 u0.r
;
: .time
  hour @ 2 u0.r [char] : emit
  min  @ 2 u0.r [char] : emit
  sec  @ 2 u0.r
;

: hwclock>clock ( -- )
  rtc.get    \ -- sec min hour wday day month year
     year  !
  1- month !
  1- day   !
  ( wday ) drop
     hour  !
     min   !
     sec   !
  year @   month @ 1+  tu.upd.limits
;
: clock>hwclock ( -- )

  year @   month @ 1+  day @ 1+
  1 \ sunday ":-)
  hour @   min   @     sec @
  ( Y m d wday H M S ) rtc.set
;

#include shiftregister.fs
#include 7seg_1.fs

\ --- epoch seconds, timezones
: u>= ( n n -- t/f ) u< invert ;
: d>s ( d -- n ) drop ;
           variable   _last_epoch
          2variable   _last_esec

#2017        Evalue   EE_last_epoch
#1483228800. 2Evalue  EE_last_esec \ 2017

#include epochseconds.fs
2variable Esec
: ++Esec  ( -- )  Esec 2@  1. d+  Esec 2! ;
: .Esec   ( -- )  Esec 2@ ud. ;

2variable EsecOffset
: UTC  ( -- )     0. EsecOffset 2! ;
: MEZ  ( -- )  3600. EsecOffset 2! ;
: MESZ ( -- )  7200. EsecOffset 2! ;
: _tz.set
  _tz pin@
  dup 0 = if
    UTC
    led_utc on  led_mez off led_mesz off
  then
  dup 1 = if
    MEZ
    led_utc off led_mez on  led_mesz off
  then
  dup 2 = if
    MESZ
    led_utc off led_mez off led_mesz on
  then
  dup 3 = if
    UTC
    led_utc on  led_mez off led_mesz off
  then
  drop
;

: local.dt ( -- S M H d m Y )
  Esec 2@  EsecOffset 2@  d+  s>dt.short
;
: cd.localtime
  local.dt          \ -- S M H d m Y
  drop drop drop    \ -- S M H
  rot drop swap     \ -- H M
  >r #10 /mod swap  \ -- H.10 H.1
  r> #10 /mod swap  \ -- H.10 H.1 M.10 M.1
  #4 type.7seg      \ --
;

\ --- multitasker
#include multitask.frt
: +tasks  multi ;
: -tasks  single ;


\ --- timeup jobs ---------------------------
: job.tick
;
: job.sec
  ++uptime
  ++Esec
;
: job.min
  _tz.set cd.localtime
;
: job.hour  ;
: job.day   ;
: job.month
  \ update length of month in tu.limits
  year @  month @ 1+  tu.upd.limits
;
: job.year  ;

create Jobs
  ' job.tick ,
  ' job.sec , ' job.min ,   ' job.hour ,
  ' job.day , ' job.month , ' job.year ,

variable jobCount
: jobCount++
  jobCount @
  6 < if
    1 jobCount +!
  then
;

\ --- task 2 --------------------------------
: run-masterclock
  ['] tx-poll to emit \ add emit to run-masterclock
  begin

    tick.over? if
      tick.over!
      1 tick +!
      job.tick
    then

    half.second.over?
    dup 0<> if
      dup odd? if       \ half second
        led.1 off
      else              \ second
        led.1 on
        timeup
        0 tick !
        1 jobCount !
      then
    then
    drop

    \ run one job per loop, not all at once
    jobCount @
    bv tu.flags fset?
    if
      jobCount @ dup
      Jobs + @i execute
      bv tu.flags fclr
    then
    jobCount++

    pause
  again
;
$40 $40 0 task: task-masterclock \ create task space
: start-masterclock
  task-masterclock tib>tcb
  activate
  \ words after this line are run in new task
  run-masterclock
;
: starttasker
  task-masterclock task-init            \ create TCB in RAM
  start-masterclock                     \ activate tasks job

  onlytask                              \ make cmd loop task-1
  task-masterclock tib>tcb alsotask     \ start task-2
  multi                                 \ activate multitasking
;

\ --- main ----------------------------------
: init
  +sr
  $00 byte>sr $00 byte>sr $00 byte>sr $00 byte>sr
  sr_latch low sr_latch high
  +sw
  +leds leds-intro
  #2017 1 1 0 0 0 clock.set
  0. uptime 2!
  0. Esec    2!
  EE_last_epoch _last_epoch  !
  EE_last_esec  _last_esec  2!
  +ticks
  timeup.init
  +i2c
  i2c_addr_rtc i2c.ping? if
    hwclock>clock
    clock.get ut>s.short Esec 2!
  else
    _last_epoch @ 1 1 0 0 0 clock.set
    _last_esec 2@ Esec 2!
  then
  _tz.set cd.localtime
;
: run
  init
  starttasker
;
: run-turnkey
  applturnkey
  init
  starttasker
;
\ ' run-turnkey to turnkey

: .d ( -- )
  decimal
  .uptime         space space
  clock.show      space
  tick            @ . space
  ct.ticks.follow @ . space space
  .Esec                space
  Esec 2@  EsecOffset  2@ d+
  s>dt.short      clock.dot
  cr
;